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1 Background and motivation
Fix a prime p and a perfect field k of characteristic p. Let W = W (k) and Wn = Wn(k);
these each come with Frobenius automorphisms, which we call σ. If X/k is a smooth proper
variety, then H i

cris(X/W ) is a finite module over W , equipped with semilinear endomorphisms
F and V such that FV = V F = pi. In a 2013 paper, Fontaine and Jannsen constructed a new
cohomology theory that refines this structure, in a sense which we will make precise. They also
indicate that their setup leads to a good setting for discussing p-torsion sheaves, which should
be useful in p-adic Hodge theory.

We begin by giving the basic definitions of the categories they work in; we will come back
to the motivation near the middle of the talk.

2 Gauges

2.1 Basic definitions

A gauge of abelian groups is a Z-graded abelian group equipped with morphisms f of degree 1
and v of degree −1 such that fv = vf = p, as follows:

· · ·�M−1 �M0 �M1 · · · . (1)

Morphisms of gauges are morphisms of degree 0 commuting with f and v. Gauges in an ar-
bitrary abelian category, and morphisms thereof, are defined analogously. We will mostly be
interested in gauges of W -module, k-vector spaces, and sheaves thereof on some site.

Remark: If R is a ring, gauges of R-modules are just graded modules over the commuta-
tive graded ring1 D(R) = R[f, v]/(fv − p), with f and v in the appropriate degrees.

∗Notes for a talk in Berkeley’s student arithmetic geometry seminar. Main reference: Fontaine-Jannsen,
“Frobenius gauges and a new theory of p-torsion sheaves in characteristic p. I”.

1Not graded-commutative, honestly commutative.

1



For −∞ ≤ a ≤ b ≤ ∞, we say that a gauge M is concentrated in the interval [a, b] if f is
an isomorphism to the right of [a, b] and v is an isomorphism to the left of it. In this case,
M is determined up to unique isomorphism by the portion of it lying between degrees a and b
inclusive.

As a simple example, a gauge concentrated in the interval [a, a] has all M i isomorphic to
Ma, with f = 1 and v = p to the right, and f = p and v = 1 to the left.

Lemma: Let R be a noetherian ring and M a gauge of R-modules. Then the following are
equivalent:

1. M is of finite type; i.e., is finitely generated as a D(R)-module.

2. Each M i is finitely generated over R, and M is concentrated in a finite interval.

The proof is not hard, and we omit it.

2.2 Motivating example

We now pause to indicate how one can construct some interesting gauges out of something like
a crystal.

LetM be a finite freeW -module, and D = M⊗W W [1/p]. Suppose we are given a σ-semilinear
isomorphism φ : D → D. Then we call (M,D, φ) a virtual F -crystal over k, and an F -crystal if
φ(M) ⊆M . (For brevity, we will often simply say things like “M is a virtual crystal”, dropping
many things from the notation.)

Given a virtual crystal M , we construct a gauge as follows. For each r ∈ Z, we let

M r = {m ∈M : φ(m) ∈ prM}. (2)

We define v : M r → M r−1 to be the inclusion, and f : M r → M r+1 to be multiplication by p.
Clearly, fv = vf = p.

Since M is finitely generated, one can show that pbM ⊆ φ(M) ⊆ paM for some a ≤ b in
Z. (Write a matrix for M , up to σ, and take the smallest and largest p-adic valuations of the
entries.) It follows that M r = M for all r ≤ a, so v is an isomorphism to the left of Ma.
It’s not much harder to show that f is an isomorphism to the right of M b.2 So in fact M is
concentrated in the finite interval [a, b]. It is clear that each M r is finitely generated over W ,
so by the lemma, M is a finite-type W -gauge.

At this point, we pause to make some more definitions. We will come back soon to add more
structure to this gauge.

2If r ≥ b, then Mr = {m ∈ D : φ(m) ∈ prM}, since φ is injective. The claim follows immediately.
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2.3 More definitions

Let M be a gauge in an abelian category A. We define:

M+∞ = lim
r→∞,f

M r, (3)

M−∞ = lim
r→−∞,v

M r. (4)

In general, these colimits may only exist in Ind(A), but in many cases of interest (for example,
when M is concentrated in a finite interval) they are honest objects.

Fix an endofunctor σ : A → A. (For us, this will always be a Frobenius twist on the cat-
egory of W -modules or similar.) A ϕ-module with respect to σ is a gauge M equipped with a
morphism ϕ : σ(M+∞)→M−∞.3 Morphisms of ϕ-modules are morphisms of gauges commut-
ing with ϕ.

A ϕ-gauge is a ϕ-module in which ϕ is an isomorphism.

All the discussion above can be repeated with some extra structure. We will only sketch the
definitions briefly, as they are technically necessary but don’t add much insight. Fix a topos
T = Sh(C), the category of sheaves on some site. A ϕ-ring R in T is a commutative Z-graded
ring in T , equipped with f ∈ Γ(R1), v ∈ Γ(R−1), and ϕ satisfying the earlier relations. It is
perfect if ϕ is an isomorphism.

Given a ϕ-ring R, there is a reasonable notion of a ϕ-module over it, where ϕM must be
ϕR-semilinear. If R is a perfect ϕ-ring, a ϕ-R-gauge is a ϕ-module over R where ϕ is an iso-
morphism.4

Main example: If 1 ≤ n ≤ ∞, then Wn[f, v]/(fv − p) is a ϕ-ring (in the punctual topos
T = Sh(∗)), where ϕ is the Frobenius twist as usual. We will abbreviate this as just “Wn”, as
its modules are just Wn-linear gauges with semilinear ϕ.

Each of these categories of modules and gauges is abelian and comes with a tensor product.

2.4 Back to main example

We now return to the example of the W -gauge determined by a virtual crystal M , and endow
it with the structure of a ϕ-gauge. For each r ∈ Z, we have a map

ϕr : M r →M = M−∞ (5)

defined by ϕr(x) = p−rφ(x). These are compatible along f = p, so they induce a map

ϕ : M+∞ →M−∞. (6)
3If they’re only Ind-objects, then such a morphism is by definition essentially a compatible family of maps

from each sufficiently high-degree component to all sufficiently low-degree components.
4If R is not perfect, we ask instead that ϕ′M : R−∞⊗ϕR,R+∞ M+∞ be an isomorphism. For R perfect, these

conditions are equivalent.
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This is an isomorphism: it’s injective because φ is; it’s surjective because φ ⊗W W [1/p] is
surjective, and for any m ∈M we can clear the denominators of φ−1(m). This discussion gives
us a functor

{virtual crystals/k} −→ {finite-type ϕ−W − gauges with free components}, (7)

which one can see is fully faithful. In fact, one can do better:

Theorem: A ϕ-W -gauge (M,ϕ) is in the essential image of the functor above if and only
the underlying W -gauge M is free (as a module over D(W ) = W [f, v]/(fv − p)).

The proof takes five pages, and neither implication is trivial. We give only a very rough sketch.
One shows that M is a free W -gauge if and only if M/pM is a free k-gauge; this requires a
Nakayama-like lemma. The crux of the argument is to show that anything in the image of the
functor is free, using another mod-p criterion which turns out to be equivalent to freeness of
M/pM .

2.5 Recovering a Dieudonné module of weight i

At the beginning of this talk, I claimed that gauge cohomology would be a refinement of crys-
talline cohomology. I will now explain the process by which it actually recovers crystalline
cohomology.

If X/k is a smooth proper variety, H i
cris(X/W ) is a finitely generated W -module equipped

with endomorphisms F 5 and V , which are respectively σ- and σ−1-semilinear, such that FV =
V F = pi. (This follows from considering the operator ϕ = piF onWΩi

X with slopes in [i, i+1),
chasing it through the slope spectral sequence, and using Poincaré duality.) We call such an
object a Dieudonné module of weight i.

Given a finite-type ϕ−W -gauge concentrated in an interval [a, a+ i], say

Ma �Ma+1 � · · ·�Ma+i−1 �Ma+i
ϕ
∼−→Ma, (8)

we can recover a Dieudonné module of weight i as follows: let M = Ma, F = ϕf i, and
V = viϕ−1.

If i = 1, a gauge concentrated in [0, 1] contains no more information than a Dieudonné module
of weight 1. But if i > 1 (and we ignore torsion), then a gauge concentrated in [0, i] has the
data of M0, a filtration by the images of vr : M r →M0, and maps f and v going up and down
the filtration.

Also note that nothing is stopping these objects from having p-torsion. In fact, there are
examples of smooth proper X/k whose crystalline cohomology has p-torsion. Gauge cohomol-
ogy will recover this.

5Usually called ϕ.
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Aside: Dieudonné modules of weight 1 are usually just called Dieudonné modules. These
are important in p-adic Hodge theory, as they classify certain kinds of p-group schemes over k.
More specifically, there are equivalences of categories:

{finite-length Dieudonné modules}op ' {finite commutative p-group schemes/k}, (9)
{torsion-free Dieudonné modules}op ' {p-divisible groups/k}, (10)

One of Fontaine-Jannsen’s motivations for writing this paper was to generalize Dieudonné
theory. Roughly speaking, their goal was to define an interesting class of p-torsion sheaves on
the syntomic site of a scheme X, and prove an equivalence of categories between these and
some category related to gauges. The idea was that if X = SpecOK , some p-adic integer ring,
then we should have some syntomic sheaf whose generic fiber is something like µpn (whose étale
cohomology we are interested in), and whose special fiber is related to crystalline cohomology.
Then one could hope that classifying such sheaves and understanding their cohomology would
give rise to comparison theorems between étale and crystalline cohomology. In the case where
OK is unramified over Zp, this was essentially accomplished in the unramified case by the earlier
paper of Fontaine-Messing.

3 Topologies
We will be working with sheaves on the syntomic site, which is finer than the étale or quasi-étale
site but coarser than the flat (fppf) site. We now make the relevant definitions.

Definition: A morphism π : X → S of schemes is syntomic6 if it is flat, finitely presented, and its
fibers are local complete intersections; i.e. locally of the form Specκ[x1, . . . , xn]/(f1, . . . , fc)→
Specκ where the source has the minimal possible dimension n− c.

Remark: étale =⇒ syntomic =⇒ flat. In characteristic p, a p-th root extraction is syn-
tomic but not étale.

We will work on the following site. The underlying category C is the category of syntomic
k-schemes, and the covers are surjective families of syntomic morphisms. (The paper works
somewhat more generally: they consider all “absolutely syntomic” schemes, with the same
topology.)

4 The gauges Gn
The reason for using the syntomic topology comes from the Fontaine-Messing paper mentioned
earlier, which exhibits some syntomic sheaves that calculate crystalline cohomology. Namely,

6This term was coined by Mazur; it translates approximately into Greek as “cut together”.
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we define:

Ocris
n (X) = H0

cris(X/Wn), (11)
Ocris = lim

←n
Ocris

n . (12)

As one might expect, these are closely related to divided power structures, and indeed they are
better defined in that way. We will ignore this perspective, and simply take it as a black box
that these are syntomic sheaves, that their cohomology recovers the usual crystalline cohomol-
ogy of X, and that each of them is endowed with a Frobenius endomorphism ϕ.

We now build a ϕ-gauge out of Ocris. To do this, we squint our eyes, blocking out the sheafiness
of everything, and apply our main construction from earlier on the “virtual crystal” Ocris:

Gr = “{x ∈ Ocris : ϕ(x) ∈ prOcris}′′ (13)

= ker(Ocris ϕ−→ Ocris � Ocris/pr). (14)

We also have a mod-pn version: Grn := Gr/pn. The construction gives rise to semilinear maps
ϕ : G+∞n → G−∞n . Since Ocris is stable under ϕ (i.e. it is not just a “virtual crystal” but a
“crystal”), these gauges are concentrated in [0,∞].

Theorem: For each n, ϕ : G+∞n → G−∞n is an isomorphism.

The proof takes 9 pages and involves endowing Ocris
1 with the structure of an F -zip; we will say

nothing about it except that it is believable given the case we discussed earlier.

5 Gauge cohomology
Let X/k be a syntomic variety. We define the level-n ϕ-gauge cohomology of X by

H i
g(X,Wn) = H i

syn(X,Gn). (15)

Since Gn is a ϕ-gauge, it is not hard to endow this with the structure of a ϕ-gauge as well; the
degree-r part is just the cohomology of Grn.

Fontaine and Jannsen prove that gauge cohomology refines crystalline cohomology in the fol-
lowing sense:

Theorem: For X/k proper of dimension d:

1. The gauge H i
g(X,Wn) is of finite type, and concentrated in the interval [0, i]. It vanishes

if i > 2d.7

2. There is a canonical isomorphism H i
g(X,Wn)0 = H i

cris(X/Wn).

7The paper says i ≥ d, which doesn’t make sense.
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3. If X is smooth, proper, and irreducible, then Poincaré duality for crystalline cohomology
extends to a perfect duality of ϕ-Wn-gauges

H i
g(X,Wn)×H2d−i

g (X,Wn)→ H2d
g (X,Wn)

∼−→ Wn(−d), (16)

where Wn(−d) is the ϕ-gauge concentrated in degree d with value Wn and ϕ acting as σ.

The comparison to crystalline cohomology follows from Fontaine-Messing’s isomorphism

H i
syn(X,Ocris

n ) = H i
cris(X/Wn), (17)

because G0n = Ocris
n . The other statements are proved by reducing to the case n = 1, under-

standing the resulting gauge in terms of the de Rham complex of X and its cohomology, and
quoting the corresponding facts about de Rham cohomology.

7


